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The mechanism and kinetics of diffusion-controlled heterogeneous chemical reactions
taking place in a dense layer of a granular permeable material, is investigated, Gas-solid
chemical reactions of this type are encountered in such technological processes as calcin~
ing the iron ore pellets [1], maifacture of sponge iron [2 and 3], gasification of solid fuels
with appreciable ash residues [4], e, a,

In the present paper we obtain a quasilinear system of partial differential equations
describing diffusive mass transfer in a layer, The problem is complicated by the fact that
the size of the zone in which the reaction takes place is not known in advance, therefore
its boundaries must be determined in the course of solution. In the case of an isothermat
mass transfer however, the solution can be obtained in a closed form, Variation of the
similarity criteria with the dimensionless arguments, i, e, the time and the distribution
coordinates, is shown graphically,

1, Basic physical premises and the chemical reaction equations,
The heterogeneous, diffusion-controlled reactions considered here possess a characteristic
feature, namely their zonal character within each particle [1 and 4], We can assume that
at any instant of time the particle consists of two zones separated by the reaction inter~
face, The outer zone consists of reaction products and the inner one — of the unreacted
material, Convective diffusion is responsible for bringing the active gaseous component
(oxygen in the oxidation processes, CO or Hg in the reducing processes) to the surface of
the particle, where molar or molecular diffusion takes over to bring it to the reaction
interface where it reacts with the solid (Fig, 1).

We shall consider a layer composed of homogeneous
spherical particles of the equivalent radius R. As we know,
the quantity R can be derived from the experimental gran-
ularity measurements [5],

If we assume that the whole surface of the spherical par-
ticle is equally accessible to the reactive gas component
and neglect its change in concentration in flowing over a
distance of the order of the particle diameter, then we can
assume that the reaction interface is also spherical, Rate
of displacement of the reaction sphere defining the overall
chemical reaction rate, can be found from the mass balance
equation for the reacting gas at the solid-solid interface

—Lg(dp | dv) = 8kep) (.1)
where 0 is the radius of the reaction sphere, T is time, { is the stoichiometric extent
of reaction parameter, 7 is the volume weight of the particle, g is the content by
weight of the reactive component in the solid reactant, & is the density of the reactive
gas, k is the reaction rate constant and ¢(p) is the exeess concentration of the reacting

Fig, 1
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8% o(p) = ¢'(p) — ¢, (1.2)
where ¢"(p)is the actual concentration and ¢, is the equilibrium concentration, We shall
assume that the equilibrium.concentration ¢, is independent of the radius of the reaction
sphere and, that the inequality ¢"(p) >> ¢, holds,

In other words, we shall assume that the reaction proceeds with absorption of the gas-
eous phase,

In the following we shall regard the excess concentration ¢ (p) as the transport potential,

In the zone of products the gas is not used up, therefore its excess concentration c(r)
varies according to the usual law of diffusion

9% 2 de 4o
e T =0 (1.3)
With the boundarya conditions given by
0
s =Blec—c (RN, D] —ke(p) (1.4)

where D is the effective diffusion coefficient, P is the convective mass transfer coeffi-
cient and ¢, is the concentration of the reagent in the gas stream, we can solve (1, 3) to
obtain the law of distribution of concenutration ¢(r} throughout the thickness of the con-
sideted zone -y ¢ (D/kR)+ {1 —(o/7)](p/ R)

= O DT (o TR —TL— (D] 3R] (5] R)* (1.5)

This is the distribution under the steady state conditions, when p / R <C1.

It is & well known fact, that in a diffusion-controlled reaction the value of the coeffi-
cient D / kR is much less than unity, On the other hand, the coefficient D ] BR is
uniquely connected with the Nusselt number Vy, by the relationD / BR=2/N\,'D'D
where D, is the outer diffusion coefficient,

Since under the conditions encountered in various technological processes the Nusselt
number is sufficiently large (N, = 50--100), the outer diffusion which opposes the
mass transfer -process can also be neglected,

Thus in the case of heterogeneous chemical reactions whose limiting rate is governed
by the diffusion of gas within the particle (inner diffusion. mode), the following approxi-
mate analog of (1.5) .\ _ (D/kR()+ L=/l (/) (1.6)

p/R)—(p/R)
will cause a detectable error only for very small radii of the reaction sphere, Insertion
of (1. 6) into (1.1) leads to the following equation defining the law of variation of the
, radius of the reaction sphere with time
b Je d Db ¢
b x (1.7
dv LrgR (p/ R)— (p/ R)*

To construct an equation defining the concentration
¢, of the reactive component in the gas stream, we
shall require the mass balance equation for a unit area
element dz of the reaction zone at the distance &
from the layer surface (Fig,.2). We first note that the
change in the amount of the reacting element in the
gas stream after it has passed the element of the layer
just mentioned, is equal to

a"; dz (1.8)

dJ] = —w
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where @ is the fileration rate computed over the whole cross section of the layer (*),
On the other hand, . dJ is equal to the product_of the reaction rate in a unit volume
of the layer and the volume element dV = 1 dz. Reaction rate for a single particle is

= & opsber 0 p?
V=g B g (1) .9)
Since the rate of reaction per unit layer volume is /V times larger, where
3 1—m
=7 mR (1.10)

is the total number of particles in the considered volume and 7 denotes the porosity of
the layer, the required expression for dJ will become

_U—miley 0 ps
aJ = “ —8—17-(1—--}—?§)dx (1.11)
Equations defining the concentration ¢, are obtained by combining (1, 8) and (1,11)
and can be written as g, (1—mytgy @ Py
i W(i'""?%—” (1:42)

Thus the diffusive mass transfer process in a granular layer can be described by a syse
tem of two quasilinear partial differential equations (1, 7) and (1, 12),

Values of the diffusion coefficient £ appearing in (1, 7) and of the equilibrium con-
centration ¢, poth depend, generally, on temperature, Within the range of temperatures
encountered in various technological processes this dependence can be schematized using
the Arrhenius (or other) type equations [1, 3 and 4], This imposes the necessity of con- .
sidering the mass transfer equations (1, 7) and (1, 12) together with the heat transfer equa~
tions in the presence of internal heat sources, In the present work, however, the mass
transfer process in question is isothermal, therefore the quantities D and ¢, are constant,
This is possible in particular when the transport phenomenon in the chemical processes
has low activation energy or, when & and ¢, are computed at the temperature chosen in
a certain definite manner,

2, Similarity criterion of the {sothermal mass transfer and the
boundary conditions, When describing the reaction kinetics we find, that the
extent of conversion of material is a more convenient parameter than the radius of the
reaction sphere, We shall therefore adopt the extent of conversion of material equal to
the ratio of the volume of the reacted material of the particle to its total volume

v=1—(o/Ry @b

and the reactive concentration @)
€= Cyx/Cy (2.2)

where ¢, is the excess concentration of the reactive gas component at the layer surface,
as new dimensionless variables defining the similarity criterion, We note that the new
variables ¢ and ¢ , by virtue of their physical nature, may vary within a unit interval
(0,1).

In addition we shall introduce new dimensionless variables defined by

3Dey'?) — g <
M == —%‘Rf— T g == ?ﬂlw@ £ (2.3)

*) We neglect the variation in the filtration rate caused by the fact that the quantity
of the-reactive component diminishes,
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Now we can write the basic equations (1, 7) and (1, 12) describing the course of the
chemical reaction within the layer, in dimensionless form
9% de =
—— =cF @} — =—cF F) = —"=- 2.4
A W, FW =i T @9
Here F(1)is a continuous positive function monotonically over its interval of defini-
tion (0, 1) from infinity to zero,
Equations (2, 4) are valid only within the reaction zone, which at any fixed instant m

is defined by the inequality ¢ () £ < £, (n) (2.9)

Boundaries of the reaction zone (in the following we shall discuss, for convenience, only
their dimensionless analogs) are not known in advance and have to be determined in the
course of solution of the problem, When & ™> E,(n), the material has not begun to react
with the gaseous phase, therefore ¢ = 1 = (). On the other hand, the inequality £<Z £*(v)
holds in the zone of reacted material (c = p = 1) (*).

At a fixed depth & the reaction starts at the instant 1| = 1)4(&) where 1,(E) is the
inverse of E,(n). Thus the initial conditions for the system (2.4) can be written as

¥ li=na @ = €lomraey = 0 (2.6)
Boundary conditions are somewhat more compticated, The difficulty lies in the fact
that when 1 <<n*(0) , where n*(£) is the inverse of £*(n), then the material at the
surface of the layer has not fully reacted and we have a special boundary condition
Climo =1 (2.7)

If M > n*(0), then a zone of fully reacted material is situated next to the surface
and the following two boundary conditions then hold

P la=gr () = € le=zr (o = 1 (2.8)

Although two boundary conditions (2, 8) replace a single one, the problem does not
become overdefined since the equation of the boundary § = E*(n) is not known, The
same remark applies to the initial conditions (2, 6).

The initial and boundary conditions predetermine the existence of two, essentially dis-
tinct stages of the mass transfer, The first, initial stage, is characterized by the fact that
the reaction zone directly adjoins the layer surface and represents, on the plane of argu-
ments, a triangular area bounded by the curves § = 0, 1 =1"(0)and 1 =n,(§). The
next stage which we shall call the steady state stage, occurs in a semi-infinite zone situ-
ated within the layer and bounded by the curves § = E* (1), 1 == n*(0) and n =
= Ny(E)

All the above argument reflects the physical nature of the problem and is, generally
speaking, valid also in the general case of nonisothermal diffusion,

3, Integration of the chemical kinetics equations, Systems of non-
linear partial differential equations cannot, in general, be integrated by the classical
methods and numerical methods are usually resorted to, In the present case however, the

*) Keeping in mind the definition of applicability of the basic relation (1, 6) given in
Sect, 1 we note, that the actual values of ¢ and ¥ at the boundaries &, and £* of the reac-
tion zone are, generally speaking, not equal to the values shown here, although the differ-
ences are not large,
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probiem which iz essentially nonlinear, can nevertheless be solved completely by purely
analytical ways wing the foliowing particular methed,

Let us introduce the function R = 3, — (4 — 7] — b {3.1)

continuous and increasing monotonically from zero at P =0 to !/, at § = 1. Then
the first equation of (2, 4) can be written in the form

Gh )0y =¢ (3.2
Performing partial differentiation with respect to £, aftey certain manipudations and
with {8, 4) taken into acoount, we easily obiain
3 { dh 1 %
o (F ) =0 (3.3)
The derivative dh [ d| —, = O, therefore by virme of the initial conditions (2.1
the following refatfon will always held within the reaction zone

8h ] Gt 4+ 4§ = (3.4)
Let us pow write {3, 47 in the form of the fellowing ordinary first order differential
equation Oh | OF 4 YF(P) =0 (3.5}

Integrating this equation for the initial reaction stage when the boundary condition
{2, 5} holds, we obtain the requirsd integral in the following Impliciz form

= fbm} ~ @{—xw 68
where

Function @(&E}}iﬂﬁeases mamrﬁmcaﬂy in the interval {G, 1} fmm zoTo o “fg In g —

— Ham i 3. The extent of conversion of materizl at the layer swiace Py == Bl g CAR
be obtained In accordance with the firgt equation of {2, 4), from

dpy [ dn = Fli,) (3.8)

Since tp],ﬂmmw} = ) and N(0) == 0, the integral of (3, 8) which defines the depends=
ence of Y, on the dimensioniess time 7, In an impliedt form, &=

B} = m (3.9
This describes the reaction kineties in 2 diffision-controfied process for particles dige
tributed at the surface of the laver appearing, basically, as discrete particles,
Thus the relations (3, §) and (3. 9) fully define the character of varfadon of the extent
of conversion § (., ) in the initial stage of the reaction, Simultaneous solutdon of
these equations is best performed graphically,

The resulting relation = O*DO(py) — E (3.40)

where 0#*is the inverse of (D, has the form of a wavelling wave which propagates with-
out distortion into the layer with a varying velocity

d®0pg) [ dn = 1 /b, (8.14)

The latier expression is easily obtained fom {8,7) and {3, 8. Differentiating now
{3, 8) partially with respect to 1 performing sorme manipulations and taking fnto scopmnt
{3, 11 and the first equation of (2, 4), we obtain the following formula for the dimension-
less concentration of the reacting gas
e =07 (342)
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Thus the process of varying the concentration ¢ with time, also exhibits 8 wave chare
acrer, However, since the extent of conversion of material |, on the layer surface in-
creases monotonically from zero at v =0 to unity at 4 == ¥/, it follows that the intenw
sity of the concentration wave gradually diminishes, When 1 > 1/, ,Eq.(3, 9) forbids
physically meaningful solutions, Therefore the duration *(0) of the initial stage of the
reaction is equal to ‘/2. At the completion of the initial stage we have the following
characteristic squality © = ¥$.

The boundary () of the reaction zone is obtained from the basic relation {3, £) by

THin == {} , and has the f
PUting W = 0, and has the form ¢ () = D () (3.13)
We npte that at the end of the initial stage
—
Eu(tf) =% I3~ 1, n}/3
At small values of the arguments we can also use the following approximate formulas
$—VEn—35 c=1 Vs LM =V Tn (3.14)

We also note that at ymall values of 1) the law governing the translation of the Towet
boundaty §,(v) of the reaction zone is analegous to the law of translation of the inter~
phase boundary in the Stefan’s problem (6],

Z 4

AT _F—F %
,, gy
! /| a2 E‘“” ngrgi’]{//j// /

P /! a2l

¢ 7 5 =
Fig, 3 Fig. 4
It the second stage when v => !/, the integral of (3, 5) satisfying the boundary condi«
tion (2, Y) has the form E—E*(n) = n3~Yen VIi— @ () (3.15}
which on partial differentiation with respect w 5, vields
c= (@& Jdn) ¥ (3.16)
Puttimg § = g*(n), we obtain dg*. /dn = 1 (31;?)
But E* == O when 1 == !}, Consequently the reaction zone boundaty has the form
) = — 1y (3.18y
The other boundary is obtained rom (3, 15} by punting P = O.and &5
Ba (M) =n—13+ % In3—Yyn}3 (3.19)

Thus it follows from (3, 15) and (3, 16) that the dimensionless concentration ¢ of the
reacting gas and the extent of conversion of the material \p in the second stage of reacs
tion are equal to each other and depend on the difference of the arguments 1} —E&. The
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process assumes the character of a travelling wave propagating at a constant velocity,
Boundaries of the reaction zone consist, at this stage, of mutually parallel straight lines,

Therefore its width EL(n)—E*(n) = 3/, In 3—/, an (3.20)

is constant and so js_the duration of reaction for all particles which are deeper than

3/, In3 — 1/, }/'3 (Fig. 3). Comparing (3,6) with (3,15) and (3, 13) with (3,19) we
see, that the quantities ¢ and 1 remain continuous during the transition from the initial
to the steady state and the boundary of the reaction zone remains unbroken,

Figure 4 shows the variation of the relative concentration ¢ and of the extent of con-
version of material y versus the dimensionless distribution coordinate £ (on the figure
{=¢§) for various values of the dimensionless time 1. We see that the curves for ¢ and
¢ are essentially different during the initial stage of the mass transfer (n<(%/) ; they
merge into each other during the second stage,

We note that the distribution of the concentration and of the extent of conversion of
the solid throughout the thickness of the reaction zone in the second stage of the mass
transfer (n > /s) also defines the distribution of the corresponding quantities when the
gas and the solid move in opposite directions, Parameters of the counter-current mecha-
nism (rate of delivery of the solid, gas consumption, etc, ) are then obtained from the
condition (3, 7) which represents a dimensionless mass balance equation in the reaction
zone with the mass transfer completed,

In conclusion the authors take this opportunity to thank L, A, Ladyzhenskii for assistance,
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